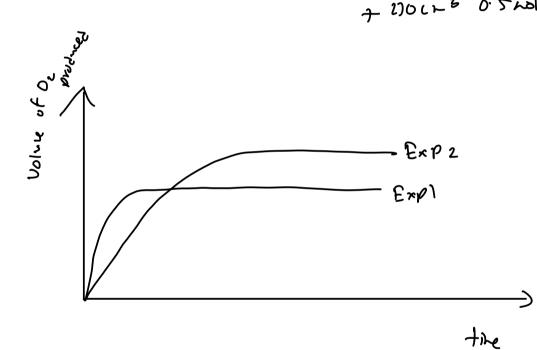
## Reaction Kinetics

# Rate = Change in amount of reactant or product Time

#### 1) The effect of temperature or the reaction

- © Rate of the reaction increases with the increase of temperature.
- 6 particles have more killetic theray.
- @ particles more faster
- O More collisions per second/ frequency of collisions increase.
- (a) More particles have evergy greater than / equal the activation evergy.
- @ Number of effective collisions increase.
- 2) The affect of concentration on the rate of a chemical reaction
  - 3 More particles per unit volume.
- OFrequency of collisions increase
- @ Number of effective collisions it crease.


$$2H_2O_2 \xrightarrow{M_1O_2} 2H_2O + O_2$$
(aq) (4) (9)

$$\frac{\text{Exp-2}}{100 \text{ cm}^3}$$

$$\frac{100 \text{ cm}^3}{1.0 \text{ nold}^3}$$

$$\frac{1.0 \text{ nold}^3}{1.0 \text{ nold}^3}$$

$$\frac{1.0 \text{ nold}^3}{1.0 \text{ nold}^3}$$



$$\frac{\text{Example-2}}{\text{CaCO}_{3_{CS}}} + 2 + C1 \longrightarrow (\text{aCl}_{2_{QS}} + \text{HzO}(2) + CO_{2_{QS}})$$

#### Exp2

50 cm<sup>3</sup> 4.0 mol/dm<sup>3</sup> +101 0.1 mol Cacia + 150 cm<sup>3</sup> /420

Yield Both yield save.

Rate: Expl higher.

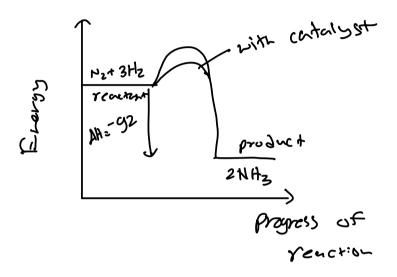


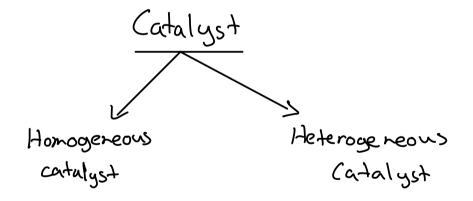
# Effect of surface area (Applicable for the solid reactants)

- © Rate of the reaction increases with the increase of surface area of the solid reactants.
- @ Mare particles were exposed to react.
- @ Frequency of collisions increase.
- @ Number of effective collisions increase.
- O with the increase of the partitles size,

surface area decreases.

# Effect of pressure on the rate of the reaction Capplicable for the gaseous reactivity


- O Rate of the reaction in creases with the increase of pressure of the gaseous reactants.
- @ Gas molecules are closer-
- @ Frequency of collisions increase.
  - 10 Number of effective collisions increase.


#### Catalyst

- E) Substances which can speed up a chorical reaction by lowering the activation evengy by creating an alternative route are called catalyst.
- @ Catalysts charge the reaction recharism.
  - 6 Catalysts can not
    - charge the equilibrium composition.
    - Charge the equilibrium position
    - charge the enthalpy though

- charge the yield of the product.

$$N_{2(g)} + 3H_{2(g)} \stackrel{Fe}{=} 2NH_3$$
 $450^{\circ}C$ 
 $200 \text{ atr.} \quad \Delta H = -92 \text{ $2 \times 10^{-1}$}$ 





### Homogeneous Catalysis

Reactants and catalysts are existed in the same physical state (same phase).

#### Examples

#### 1 Esterification

$$CH_{3}COOH + CH_{3}CH_{2}OH = CH_{3}COOCH_{2}CH_{3} + H_{2}OOCH_{2}CH_{3}CH_{3}OOCH_{2}CH_{3}OOCH_{2}CH_{3}OOCH_{2}CH_{3}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOCH_{2}OOC$$

$$350_2 + N0_2 \rightarrow 50_3 + N0$$
(9) (9) (9)

Overall · 
$$50_2 + \frac{1}{2}0_2$$
 (9)  $\rightarrow 50_3$  (9)

$$2 Fe^{3+} + 2 I_{(aq)} \rightarrow 2 Fe^{2+} + I_{(aq)} + I_{(aq)}$$
  
 $2 Fe^{2+} + S, Oo^{2-} \rightarrow 2 SO_{1L} + 2 Fe^{3+}$ 

#### Overall reaction

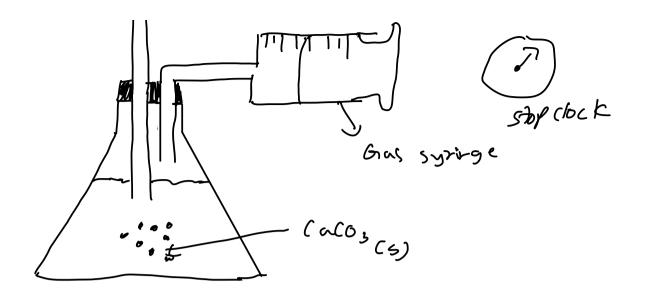
$$5_{2}0_{8}^{2-} + 2\underline{T} \rightarrow 250_{4}^{2-} + 12$$

(aq) (aq) (aq)

Offere,  $5208^{2-}$  and  $I^-$  have some charge so they repel causing more activation energy.

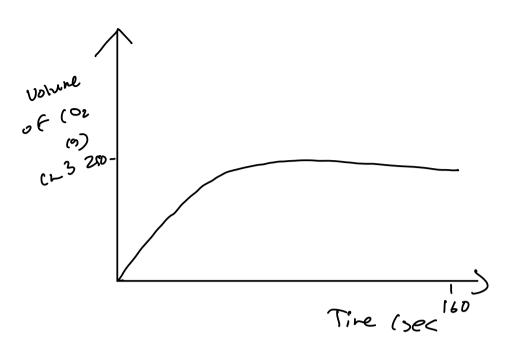
#### Heterogeneous Catalyst

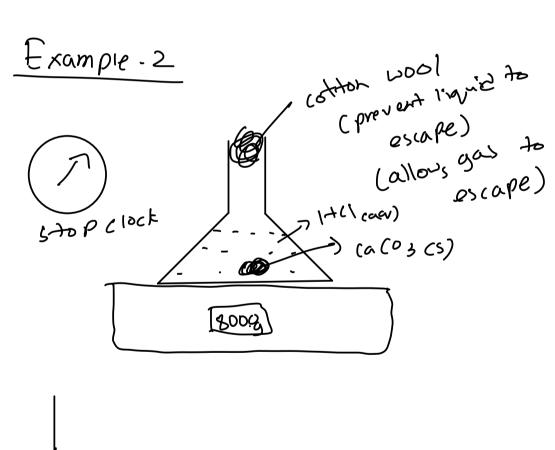
Reactants and catalysts do not exist in the same physical state, rather they have different physical states.

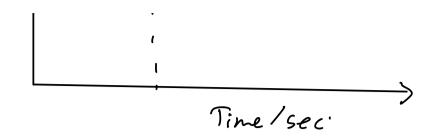

## Examples

(9) 
$$\frac{2atn}{2atn}$$
  $\frac{450°C}{(3)}$   $\frac{1}{2}$   $\frac{1}{2}$ 

$$\frac{2(O_{(g)} + 2NO_{(g)})}{Rh_{(s)}} \xrightarrow{\frac{P_{+}}{Or}} \frac{2(O_{2}(g) + N_{2}(g))}{Rh_{(s)}}$$

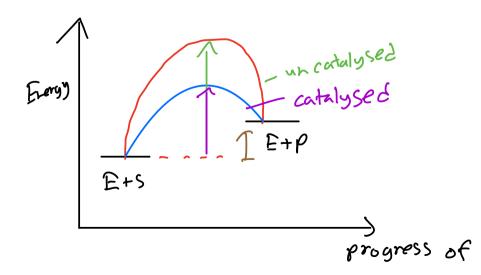

Experiment to determine the rate of a chemical reaction


Reaction: Example-1



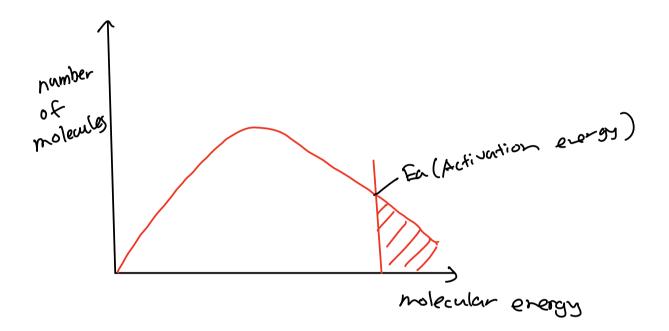

Theasure the volume of gas after a period of time

| Time Isec | Volume of Cozca) |
|-----------|------------------|
|           |                  |
| 0.0       | 0.0              |
| 20.0      | 85.D             |
| 40.0      | 145.0            |
| 60.0      | 185.0            |
| 80-0      | 215.0            |
| 100.0     | 230.0            |
| 120.0     | 240.0            |
| 140.0     | 245.0            |
| 160.D     | 250.0            |
| 180.0     | 250.0            |







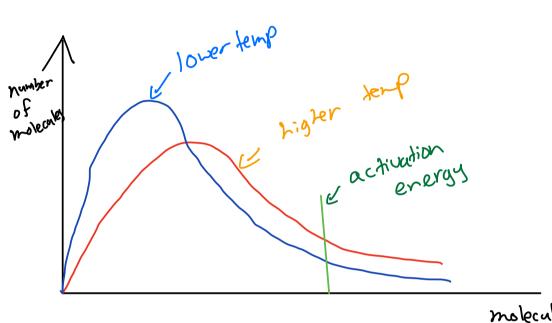


#### Enzyme

- O Enzyne is a biological catalyst.
- O Erzyme can speed up a biological reaction
- ( ) Specific for a particular reaction.
- ( ) Reactants are called substrate.
- O Exzynes lower the activition energy.
- G After the reaction enzyles are reformed.
- At higher temperature
   enzyne denatured and
   Can not show catalytic property.



#### Boltzmann distribution

The effect of temperature on rate of reaction




The Shaded area shows the proportion of mole cules in the sample that have evengh everyy to cause a chemical charge when they collide.

#### Temperature increase

© At higher temperature, more molecules have energy greater than the activation energy.

- @ Height of the curve decreases.
- Ocurve saifts from left to right
- position of activation evergy can not change.



makcular energy.

# Effect of catalyst

- O shape of the curve cannot change.
- (a) Activation energy decreases.
- More molecules have energy greater than the activation therapy.

Jurge de Concommente de la constant de la constant

#### Antocatalysis

- (a) During the autocatalysis, one of the products in a chemical reaction acts as a catalyst.
- OInitially concentration of the reactants decrease slowly.

#### Example

Reaction of acidified MnO4 with ethanedioic acid (HOOC COOH)

- @ Initially reaction is very slow.
- 6 When Mr<sup>2t</sup> ions are formed rate of reaction increases.
- OM227 jors acts as a catalyst to progress the reactions.

Reaction s

5HOOCCOOH + 2Mr04 + 6FIT -> 10002 + 2Mr24 +8H20

